RiboPy
Release 0.0.0

Dec 20, 2019

Contents:

1 Installation
1.1 General Advice e e e e e e e
1.2 Requirements o i i e e e e e e e e e e e e e e e
1.3 USINZPIP -« ¢ o v o e e e e e e e e e e e e
1.4 From Github e
2 Quickstart
3 Ribo File Format
3.1 Reference & Annotation e e e e e e
3.2 ReadLength e e
33 Meagene it e e e e e e e e e e e e e e e e e e e
34 Region Counts o v v it ittt e e e e e e e e e
3.5 RNA-Seq . . o o o e e e e e e
3.6 COVETAZE . .« v v v e e e e e e e e e e e e e e e e e e
3.7 Metadata e e e e e e e e e e e e
3.8 Ribo File Attributes e e e e e e e e
4 Python API
4.1 Quickreference e e e e e e e e e e
42 RIbO . . e e e e
5 Python CLI
5.1 CLIReference e e e e e
6 RAPI
7 Release notes
T1 Latest . . o o o e e e e e e e e e e e e e e
7.2 vO.0.0 . . e e e e e e e e
8 Index
Index

LW W W W W

9}

13
13
14

21
21

39

41
41
41

43

45

RiboPy, Release 0.0.0

RiboPy is a set of tools to work with ribo files. Ribo is a file format designed specifically for ribosome profiling data.
Ribo files contain essential quantitative entities such as metagene coverage and 5’UTR, CDS and 3’UTR counts. Ribo
files are used for downstream analysis of ribosome profiling data. RiboPy provides interfaces to read and write ribo
files as well as generating plots.

Contents: 1

RiboPy, Release 0.0.0

2 Contents:

CHAPTER 1

Installation

1.1 General Advice

We strongly recommend that users install conda first. Then, using conda, one can install RiboPy in a separate conda
environment.

For example, the following command will install RiboPy inside a conda environment named ribo.

conda env create —-f environment.yaml

The environment file above, environment.yaml, can be obtained from the RiboFlow repository.

Also, we highly encourage using conda for the installation of scientific Python packages: numpy, pandas and h5py.

1.2 Requirements

RiboPy is a python package and requires Python 3.6 or a later version. The python packages, that RiboPy requires,
are automatically installed by pip. The command line interface (CLI) requires terminal access.

1.3 Using pip

’pip install ribopy

1.4 From Github

Alternatively, you can install the latest version from github.

https://conda.io/en/latest/miniconda.html
https://github.com/ribosomeprofiling/riboflow/blob/master/environment.yaml

RiboPy, Release 0.0.0

pip install git+https://github.com/ribosomeprofiling/ribopy.git

4 Chapter 1. Installation

CHAPTER 2

Quickstart

There are two interfaces, available in RiboPy, to work with ribo files: Command Line Interface(CLI) and Application
PRogramming Interface (API).

A walk-through of Python API
A walk-through of Python CLI
Also, for R users, a walkthrough of RiboR is in this link.

https://ribosomeprofiling.github.io/ribopy/api_walkthrough.html
https://ribosomeprofiling.github.io/ribopy/cli_walkthrough.html
https://ribosomeprofiling.github.io/ribor/ribor.html

RiboPy, Release 0.0.0

6 Chapter 2. Quickstart

CHAPTER 3

Ribo File Format

Ribo files contain ribosome profiling data in a compact form. Ribo format is built on top of HDF5 . A ribo file can
hold data coming from multiple experiments.

3.1 Reference & Annotation

Ribo files work on the transcriptomic coordinates. Thus, sequencing data must be mapped to a transcriptome refer-
ence where each reference entry is a transcript. Thus, in this context we use the terms ‘transcript’ and ‘reference’
interchangeably. Typically, one representative transcript is picked for each gene for eukoryatic organisms.

3.1.1 Transcript Lengths

A ribo file requires a list of the transcript names and transcript lengths. This information is stored under reference data
group.

Transcript names and lengths are provided in a tab separated file at the creation of a ribo file. The first column contains
transcript names and the second column contains corresponding transcript lengths. All data will be stored and reported
according to this given transcript order.

Transcript List Example:

TRANSCRIPT_1 | 1512
TRANSCRIPT_2 | 1387

All quantified entities (region counts, metagene, ribosome footprint coverage and transcript abundance) are stored per
transcript.

https://support.hdfgroup.org/HDF5/

RiboPy, Release 0.0.0

Ribo

Reference Experiments

Reference Lengths \

Reference Names

= Experiment 1 Experiment_n
Annotation pe . B2 vttt pe =
Region Rna-Si Cover.
Metagene -Seq erage
ce counts {optional) (optional)
Start Site Stop Site UTRS. UTRS. Ribosome
UTRS junction, UTRS_junction, Footprint
CDS, CDS, Cwe[age
UTR3_junction, UTR3_junction,
UTR3 UTR3
occupancy abundance
HDF5 HDF5 Data Set
Data group

Fig. 1: Ribo File Organization

8 Chapter 3. Ribo File Format

RiboPy, Release 0.0.0

3.1.2 Annotation

Annotation of a transcript is the coordinates of the regions UTRS (untranslated region on the five prime end), CDS
(coding sequence) and UTR3 (untranslated region on the three prime end). Annotation information of each transcript
is stored in a ribo file where region boundaries are stored in an array.

Annotation is given in bed file format where each region is defined in a separate line. Regions are defined by specifying
their boundaries. Note that a bed file is 0-based and the start coordinate is included whereas the end coordinate is
excluded.

Bed file entry to define a region is of the following form.

TRANSCRIPT_NAME | START | END | REGION_NAME [0 | + |

In the above entry, the last two columns are not used by RiboPy but they are still maintained for bed file compatibility.

Warning: RiboPy is not designed to work with transcripts with no CDS or UTR3 regions. In other words, all
transcripts must have non-zero length CDS and UTR3 regions. Therefore the following annotation, in bed format,
is INVALID because no UTR3 region is defined,

TRANSCRIPT_3 | O 700 | UTRS | 0 | +
TRANSCRIPT_3 | 100 | 1000 | CDS 0]+

Warning: All nucleotide positions of a transcript must be annotated. Equivalently, there can NOT be gaps in the
annotation of a transcript. Therefore, the following annotation is INVALID as the nucleotide positions 32, 33 and
34 don’t belong to any region.

TRANSCRIPT_1 | O 32 UTRS
TRANSCRIPT_1 | 35 920 | CDS
TRANSCRIPT_1 | 920 | 1000 | UTR3 | 0 | +

o
+

o
+

Hint: It is possible to extract the annotation information from a ribo file. For example:

’ribopy dump annotation sample.ribo

3.2 Read Length

Ribo format allows the user to store ribosome profiling data for a given range of lengths. If the minimum length is set
to N and maximum length is set to M, then metagene, region counts, coverage and RNA-Seq (if any) data are stored
for each length from N to M (N and M are included).

Note that length is the number of nucleotides of the ribosome protected RNA footprint.

3.3 Metagene

Metagene analysis is the study of ribosome footprint coverage around transcription start and stop sites.

3.2. Read Length 9

RiboPy, Release 0.0.0

First, a radius size, r, is fixed. Second, for each transcript, the coverage data from r nucleotides to the left and to
the right side of the start site is obtained. Then, these coverage vectors are summed up to obtain an overall coverage
around start / stop sites.

Start site Stop site

R nucs R nucs R nucs R nucs

Fig. 2: Metagene for Start and Stop Sites

3.4 Region Counts

Start site is the position of the nucleotide on which ribosome starts translation. Stop site is the position of the first
nucleotide on which ribosome terminates translation. Typically, a transcript can be split into three regions via start
and stop sites: UTRS (nucleotides on the 5° end of the start site), CDS (nucleotides between start and stop sites) and
UTR3 (nucleotides to the right of stop site).

For the purpose of calculating ribosome footprints per region, we define two additional regions around start and stop
sites. The definition of these additional regions also modify the conventional definition of UTRS, CDS and UTR3.

First we fix two integers left span =/ and left span = r.

UTRS Junction: This is the part of the transcript consisting of / nucleotides to the left of the start site and r nucleotides
to the right of the start site, including the start site.

UTR3 Junction: This is the part of the transcript consisting of / nucleotides to the left of the stop site and r nucleotides
to the right of the stop site, including the stop site.

Using UTRS5 and UTR3 junctions, we re-define UTRS, CDS and UTR3 as follows.
UTRS: Nucleotides to the left of UTRS Junction.

CDS: Nucleotides between UTRS junction and UTR3 junction.

UTR3: Nucleotides to the right of UTR3 Junction.

start site stop site

| |
7 | Ues fieion GOSN U feion [0TS
_,T._A

left span right span left span right span

Fig. 3: Region Definitions

3.5 RNA-Seq

Storing RNA-Seq of an experiment is optional in ribo files.

10 Chapter 3. Ribo File Format

RiboPy, Release 0.0.0

7?7 More explanation is needed ??

3.6 Coverage

This is an optional part of ribo format.

Though metagene and region counts should be sufficient for most analysis, ribosome footprint coverage per nucleotide
position for each length might be necessary in some cases. So, the user has the option to store this data in the ribo file.
Storing coverage increases the size of the ribo file significantly,

3.7 Metadata

Metadata is a n optional part of ribo format. During or after the creation of a ribo file, users can provide metadata.
Metadata is provided in pairs of the form key: value in yaml format.

Metadata can be provided for two entities: ribo file and experiment.

3.7.1 Ribo File Metadata

This is stored at the root data group of the ribo file. Mapping or pipeline parameters or other metadata common to the
experiments can be stored here.

3.7.2 Experiment Metadata

This part is intended to hold experiment specific metadata such as cell line, treatment, library preparation method etc.

3.8 Ribo File Attributes

Upon the creation of a ribo file, the following parameters are stored and they can NOT be changed thereafter. These
attributes are created by RiboPy and they can NOT be specified or changed by the user.

* Metagene Radius
e Left Span & Right Span
* Minimum and Maximum Read Length

¢ Reference Name

Hint: These attributes can be viewed using the info command.

ribopy info sample.ribo

3.6. Coverage 11

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

RiboPy, Release 0.0.0

12 Chapter 3. Ribo File Format

CHAPTER 4

Python API

A walk-through of Python API

4.1 Quick reference

4.1.1 Ribo Attributes

Essential Ribo class attributes

ribopy.Ribo(ribo_file[, alias, file_mode])

Ribo is an interface to ribo files.

ribopy.Ribo.

experiments

List of experiments in the ribo object

ribopy.Ribo.

minimum_length

Reads, used to generate the ribo file, are of at least minu-
mum_length

ribopy.Ribo.

maximum_length

Reads, used to generate the ribo file, are of at least minu-
mum_length

ribopy.Ribo.

metagene_radius

#nucleotides to the left and right of start / stop sites in
metagene coverage.

ribopy.Ribo.

left_span

#Nucleotides to the left of start / stop sites to define
UTRS & UTR3 junction regions

ribopy.Ribo.

right_span

#Nucleotides to the right of start / stop sites to define
UTRS & UTR3 junction regions

ribopy.Ribo.

format_version

Ribo file format version

4.1.2 Getter Functions

Methods for reading ribosome profiling data.

ribopy.Ribo.

get_metagene(site_typel, ...])

Returns metagene data at start / stop site

Continued on next page

13

https://ribosomeprofiling.github.io/ribopy/api_walkthrough.html

RiboPy, Release 0.0.0

Table 2 — continued from previous page
ribopy.Ribo.get_region_count s(region_name[Returns number of reads mapping to UTRs or CDS.
)
ribopy.Ribo.get_coverage(experiment[,...]) Returns coverage at nucleotide resolution.
ribopy.Ribo.get_rnaseqg([experiments]) Returns region counts coming from RNA-Seq data.

4.1.3 Plot Functions

Some essential plots for ribosome profiling analysis,

ribopy.Ribo.plot_metagene(site_typel,...]) Generates coverage plots around start / stop sites.
ribopy.Ribo.plot_lengthdist(region_type, Generates distribution of the reads according to length
.2)

ribopy.Ribo.plot_region_count s(experiments)Generates bar plots of region counts

4.2 Ribo

class ribopy.Ribo (ribo_file, alias=None, file_mode="r")
Ribo is an interface to ribo files.

It provides access to ribo file attributes, metadata and ribosome profiling data in a ribo file.
Parameters
e ribo_file (str, BytesIO)- Path to aribo file or a handle to a ribo file

* file mode (str , [choices: "r", "r+"])-hSpy file mode. Ribo file must
exist. So only read (“r”’) or read & write (“r+”) modes are allowed. Be extremely careful
with the r+ option. For most use cases, “r”’ (read-only) option should be sufficient. You are
strongly discouraged to delete or modify existing attributes or data tables as this can corrupt
the file.

experiments
List of experiments in the ribo object

format_version
Ribo file format version

get_coverage (experiment, range_lower=0, range_upper=0, alias=False)
Returns coverage at nucleotide resolution.

Note that RNA-Seq data is an optional entity of Ribo File.

get_length_dist (region_name, experiments=[])
Returns the number of reads for each length for a given region

Parameters region_name (str, 1list)-—

get_metadata (experiment=None)
Returns user defined metadata in dictionary form

Parameters experiment (str (default = None)) - If None, the metadata of the ribo
file itself is returned. Otherwise, returns the metadata of the given experiment.

Returns result

Return type dict

14 Chapter 4. Python API

RiboPy, Release 0.0.0

get_metagene (site_type, experiments=[], sum_lengths=True, sum_references=True, range_lower=0,
range_upper=0, alias=False)
Returns metagene data at start / stop site
Metagene data is reported for a range of read lengths. Every read length in this range is included in the
returned data frame. This range is provided as an interval by specifying range_lower and range_upper,
both of which are included. If range is not specified, the minimum and maximum read lengths from the
ribo file are taken as the range definition.

Parameters

* site_type (str [choices: 'start' , 'stop']) — Determines the site,
around which metagene coverage is going to be reported.

e sum_lengths (bool [default: True])-If True, metagene datais summed up
across the given length range. If False, metagene data is reported for each length in the
given range.

* sum_references (bool [default: False]) — If True, metagene data is
summed across references (transcripts). If False, metagene data is reported for each tran-

script.

* experiments (1ist, str) — List of experiment(s). If empty, all experiments are
included.

Returns metagene_df — This data frame contains coverage around start or stop site. The col-
umn labels are the relative positions, with respect to the start or stop site. The index of the
dataframe depends on the two parameters: sum_lengths and sum_references. Whichever of
these parameters are set to True, won’t be in the index. Therefore, if sum_lengths is True,
there won’t be a length index in the metagene_df because the values are summed across the
lengths.

Return type pandas.DataFrame

get_region_counts (region_name, sum_lengths=True, sum_references=True, range_lower=0,
range_upper=0, experiments=[], alias=False)
Returns number of reads mapping to UTRs or CDS.
Region counts are reported for a range of read lengths. Every read length in this range is included in the
returned data frame. This range is provided as an interval by specifying range_lower and range_upper,
both of which are included. If range is not specified, the minimum and maximum read lengths from the
ribo file are taken as the range definition.

Parameters

* region_name (str [choices: "UTR5", "UTR5_junction", "CDS",
"UTR3_junction", "UTR3"]) — For the definition of these regions, check the
documentation at https://ribopy.readthedocs.io The region definitions are coming from the
annotation in the ribo file.

e sum_lengths (int [default: True])-If True, sum region counts across read
lengths. If False, report region counts for each length.

e sum_references (int [default: True])-If True, sum region counts across
references (transcripts). If False, report region counts for each reference.

* range_lower (int)— Minimum read length to be included in the result. range_upper:
int

Maximum read length to be included in the result.

4.2. Ribo 15

https://ribopy.readthedocs.io

RiboPy, Release 0.0.0

experiments: list, str [default: []] List of experiment(s). If empty, all experiments are
included.

Returns region_counts — The index of the dataframe depends on the parameters sum_lengths
and sum_references. More precisely, if sum_lengths is False, there will be an index for read
length. If True, there won’t be such an index as data is aggregated by read lengths. Similarly,
if sum_references is False, there will be an index for reference (transcript) names. If True,
there won’t be such an index. The columns correspond to experiments.

Return type pd.DataFrame

get_rnaseq (experiments=None)
Returns region counts coming from RNA-Seq data.

Note that RNA-Seq data is an optional entity of Ribo File.

In contrast to region counts for ribosome profiling data, the resulting data frame do not have separate
entries for read lengths. The columns of the data frame correspond to regions. The index of the Data
Frame has two levels: experiment, transcript.

Parameters

* experiments (1ist, str) — List of experiment(s) whose RNA-Seq data is to be
reported

* rnaseq_df (pd.DataFrame) — Data Frame containing RNA-Seq counts for each re-
gion.

has_coverage (experiment)
return has_coverage_data(self._handle, experiment_name)

Parameters experiment (str)— Named of the experiment whose coverage data is inquired.
Returns result
Return type bool

has_metadata (experiment=None)
Checks if Ribo has metadata

Parameters experiment (str (default = None)) - If None, the metadata of the ribo
file itself is inquired. Otherwise, checks if the given experiment has metadata

Returns result
Return type bool

has_rnaseq (experiment)
Does experiment has RNA-Seq data?

Parameters experiment (str) - Name of the experiment
Returns rnaseq_exists
Return type bool
info
All Ribo attributes packed in a dictionary.

left_span
#Nucleotides to the left of start / stop sites to define UTRS & UTR3 junction regions

maximum_length
Reads, used to generate the ribo file, are of at least minumum_length

16 Chapter 4. Python API

RiboPy, Release 0.0.0

metagene_radius

#nucleotides to the left and right of start / stop sites in metagene coverage.

minimum_length

Reads, used to generate the ribo file, are of at least minumum_length

plot_lengthdist (region_type, experiments, title=", normalize=False, output_file=", col-

ors=["blue’, 'red’, ’green’, ’brown’, 'orange’, "violet’, ’black’])

Generates distribution of the reads according to length
The x-axis is the read length and the y-axis is the number of reads mapping to the particular region.
Parameters

* region_name (str [choices: "UTR5", "UTR5_junction", "CDS",

"UTR3_junction", "UTR3"]) — For the definition of these regions, check the
documentation at https://ribopy.readthedocs.io The region definitions are coming from the
annotation in the ribo file.

experiments (1ist, str)-— Listof experiments to be plotted
title (str) - Title of the plot

normalize (bool (default = False)) — Normalize each experiment by total
number of reads.

output_file (str (default = "")) - If provided, the output will be saved in
this path.
colors ((default: ["blue", "red", "green", "brown",

"orange", "violet", "black"]))- Colors of lines.

plot_metagene (site_type, title=", experiments=[], range_lower=0, range_upper=0, normal-

ize=Fualse, output_file=", colors=["blue’, 'red’, 'green’, ’brown’, ’orange’, 'violet’,
’black’])

Generates coverage plots around start / stop sites.

“metagene_radius” many nucleotides are taken on either side of the site type. The axis is the positions of
the nucleotides relative to “site_type” and the y-axis is their frequency.

Setting normalize = True might be helpful when plotting more than one experiment. Values are normalized
by total number of mapped reads in the experiment,

Parameters

* site_type(str [choices: '"start", "stop"])-Coverage plotiscentered

around the site type.
title(str, default = "")-Title of the plot
experiments (1ist, str)-— Listof experiments to be plotted

range_lower (int) — Minimum read length to be included in the metagene coverage
data.

range_upper (int) — Maximum read length to be included in the metagene coverage
data.

normalize (bool (default = False))— Normalize metagene data by number
of mapped reads in the experiment

output_file (str, (default = ""))-If non-empty, the plot will be saved in
the provided path.

4.2. Ribo

17

https://ribopy.readthedocs.io

RiboPy, Release 0.0.0

e colors (list, (default: ["blue", "red", "green", "brown",
"orange", "violet", "black"]))- Colors of lines.

plot_region_counts (experiments, title=", range_lower=0, range_upper=0, horizontal=True, out-

put_file="")
Generates bar plots of region counts

The bar plot coming from the percentages of the counts of the regions: UTRS5, CDS and UTR3
Parameters
* experiments (1ist, str)— Listof experiments to be plotted
e title (str) - Title of the plot
* range_lower (int)— Minimum read length to be included in the bar plot data.
* range_upper (int) - Maximum read length to be included in the bar plot data.

* horizontal (bool (default = True)) — Generates bar plots horizontally. Es-
pecially for long experiment names, this is the preferred method.

* output_file (str (default = "")) - If provided, the output will be saved in
this path.

print_info (return_str=False)
Prints Ribo file information in string format.

Parameters return_str (bool) — If True, retuns the info_str and does not print. if False,
prints the info_str and returns none.

Returns info_str — Ribo File Summary String

Return type str

Notes

If this information is needed in a structured form, use the “info” attribute of the ribo object.

reference_name
Name of the reference (transacript assembly & annotation)

ribopy_version
Version of the ribopy used to creat the ribo file

right_span
#Nucleotides to the right of start / stop sites to define UTRS & UTR3 junction regions

transcript_index
Transcript indices in dictionary form.

transcript_name -> transcript_length
The transcript index coming from the order of Transcripts in the ribo file,

transcript_lengths
Transcript lengths in dictionary form.

transcript_name -> transcript_length

transcript_names
Transcripts Names in the ribo reference

18 Chapter 4. Python API

RiboPy, Release 0.0.0

transcript_offsets
Transcript offsets

This gives us the initial position of the transcript in determining coverage. If the transcripts are linearly
lined up according to the order in the ribo file, then this offset is the position of the first nucleotide of the
transcript.

4.2. Ribo 19

RiboPy, Release 0.0.0

20

Chapter 4. Python API

CHAPTER B

Python CLI

A walk-through of Python CLI

5.1 CLI Reference

’CLI Reference [OPTIONS] COMMAND [ARGS]...

Options

——debug, ——no-debug

5.1.1 create

Creates a ribo file from a given reference, annotation and alignment file.

The resulting ribo file contains a single experiment whose name is provided in “—name”. If “~name” is not provided,
the experiment name will be extracted from the ribo file path after stripping the file extension.

RiboPy works on transcriptomic coordinates. In other words, all coordinates are relative to transcripts where the first
nucleotide of the transcript is always zero. Each entry in the alignment reference must come from a single transcript.
Ribo-Seq data aligned against genomic coordinates is NOT usable with RiboPy.

A note on transcript <-> reference: Sequencing reads are mapped against a reference to generate alignment files
in bed or bam format. Each entry of this reference is coming from a transcript. Therefore, in this context,
refrence and transcript correspond to the same entity. Thus, the names ‘reference’ and ‘transcript’ are used
interchangebly. For example ‘reference names’ and ‘transcript names’ refer to the same list of names.

Reference Lengths File: Reference lengths must be provided in the ‘lengths’ option. This must be a tab separated
file where transcript names are in the first coulmn and the transcript lengths are in the seocond column.

21

https://ribosomeprofiling.github.io/ribopy/cli_walkthrough.html

RiboPy, Release 0.0.0

Example:

TRANSCRIPT_1 | 1512
TRANSCRIPT_2 | 1387

Annotation Examples: Below are some valid and invalid annotation file examples. ribopy will report an error and
fail to generate a ribo file if an invalid annotation file is given.

VALID ANNOTATION: (Assuming length of TRANSCRIPT_1 is 1252)

TRANSCRIPT_1 | O 21 UTRS | O | +
TRANSCRIPT_1 | 21 1041 | CDS 0|+
TRANSCRIPT_1 | 1041 | 1252 | UTR3 | O | +

INVALID ANNOTATION: (Assuming length of TRANSCRIPT_2 is 1000. Nucleotide positions
32,33 and 34 are not annotated)

=
+

TRANSCRIPT_1 | 0 32 UTRS
TRANSCRIPT_1 | 35 | 920 | CDS
TRANSCRIPT_1 | 920 | 1000 | UTR3 | O | +

]
+

INVALID ANNOTATION: (Assuming length of TRANSCRIPT_3 is 1200) (There is no CDS re-
gion.)

TRANSCRIPT_ 3 | 0 | 50 UTRS | O | +
TRANSCRIPT_3 | 50 | 1200 | UTR3 | 0 | +

INVALID ANNOTATION: (Assuming length of TRANSCRIPT_4 is 1000) (There is no UTR3
region.)

TRANSCRIPT_3 | 0 700 | UTRS | 0 | +
TRANSCRIPT_3 | 100 | 1000 | CDS 0]+

Region Counts & Left / Right Span: For each transcript, the number of reads aligning to each region (UTRS, CDS,
and UTR3) are stored. For this quantification, we exclude nucleotides in some proximity of start and stop sites.

This proximity is defined by taking ‘leftspan’ many nucleotides to the left of start / stop sites and ‘rightspan’
many nucleotides to the right of start / stop sites. The regions around start and stop sites are called
UTRS_junction and UTR3_junction respectively.

UTRS_juction: Nucleotides ‘around’ start site. This region is between UTRS and CDS.
UTR3_juction: Nucleotides ‘around’ stop site. This region is between CDS and UTR3.
Note that ‘around’ is precisely defined by ‘leftspan’ and ‘rightspan’ arguments.

Read Length Range: Quantified Ribo-Seq data (metagene coverage, region counts, transcript ocoverage (if any)) is
stored for each read length for a given range. This range is defined by —lengthmin and —lengthmax. Both values
are inclusive. So, for example, for —lengthmin 19 —lengthmax 21, region counts are computed and stored for
RNA fragments of length 19,20 and 21 separetely. For human Ribo-Seq data, a range from 15 to 35 can be
sufficient for conventional experiments.

Metadata: Metadata, either for the ribo file or for any experiment, is an optional argument. Metadata must be
provided in yaml format.

Users can provide metadata for

22 Chapter 5. Python CLI

RiboPy, Release 0.0.0

i) ribo file
—ribometa
ii) experiment
—expmeta
Metadata is provided in pairs of the form ‘label: value’

Example Metadata:

cell-line: | HEK
enzyme: | RNASEI

Examples: Below are some ribo file generation examples in different settings.

1) Some command line exaples to create ribo files. Create a file named WT.ribo in the current directory. Provide
alignment data in a zipped bed file. Do NOT store coverage data.

ribopy create —--name WT \
——alignmentfile WT.bed.gz \
—-reference appris_human_vl \
-—lengths appris_len.tsv \
——annotation appris_regions.bed \
—-radius 50 \
-1 35 -r 15\
——lengthmin 15 —-lengthmax 35 \
—-nocoverage \
WT.ribo

2) Create a file named Treatment_1.ribo in the current directory. Provide alignment data in a zipped bam file.
Store coverage data.

ribopy create —--name Treatment_1 \

——alignmentfile Treatment_1.bam \
-—format bam \

—-reference appris_human_vl \
—-lengths appris_len.tsv \
-—annotation appris_regions.bed \
——radius 50 \

-1 35 -r 15 \

——lengthmin 15 --lengthmax 35 \
Treatment_1.ribo

3) Create a file named WT_2.ribo in the current directory. Provide alignment data in a zipped bed file. Do NOT
store coverage data. Read metadata of this experiment from WT_2_meta.yaml

ribopy create --name WT_2 \
-—alignmentfile WT_2.bed.gz \
——reference appris_human_vl \
—-lengths appris_len.tsv \
-—annotation appris_regions.bed \
—-radius 50 \
-1 35 -r 15 \
——lengthmin 15 --lengthmax 35 \
-—nocoverage \
——expmeta WT_2_meta.yaml \
WT_2.ribo

5.1. CLI Reference 23

RiboPy, Release 0.0.0

CLI Reference create [OPTIONS] RIBOFILE

Options

—a, ——alignmentfile <alignmentfile>
Aligned Ribo-Seq Data File If no file is provided, it is read from standard input.Alignment file can be in bed or
bam format.Bed files with ‘.gz’ or ‘.gzip’extension are assumed to be gzipped.So they will be automatiocally
unzipped.If no aligment file is given,it is read from the standard input.Thus, the user can pipe the output of some
processto ribopy to produce ribo files.

—-f, ——alignmentformat <alignmentformat>
Alignment File Format [default: bed]

Options bedlbam

—--name <name>
Experiment name If name is not provided, experiment name is extracted from the ribo file path. If —name
parameter is omitted, experiment name is determined using the ribo file path. For example if the ribo file
path is /home/user/data/WT.ribo, then, experiment name is set to “WT’. Experiment name can only contain
alphanumeric characters, ‘_’, ‘- and “.".

—-reference <reference>
Reference name It is good practice to give a unique name to a particular transcriptome and annotation pair and
use it consistently.For convenience, the user has the freedomto choose a name for the transcript reference and
the annotation, used to create a ribo file,If used consistently, one can tell whether two ribo files are coming from
the same annotation or not.Note that ribo files having different reference names can not be merged. [required]

—-lengthsfile, —--lengths <lengthsfile>
A tab-separated file containing ref. name and ref. lengths [required]

——annotationfile, ——annotation <annotationfile>

A bed file defining UTRS, CDS and UTR3 regions.Each transcript must be annotated. More explicitly, the
coordinates of the regions UTR5, CDS and UTR3 must be provided for each transcript. This annotation is
provided in a BED file. The annotation can not contain gaps. All nucleotides of a transcript must belong to
a region. If a transcript does not have a CDS or UTR3 region, it must be excluded from the lengths file and
annotation. Note that bed files are 0-based, start position is included and the end position is excluded. The order
and transcript names in the lengths file must match the order in the annotation file. Annotation data is kept in
ribo files. It is possible to extract the annotation from a ribo file using the dump command. [required]

—--metageneradius, —--radius <metageneradius>
Number of nucleotides on either side of start / stop sites for metagene analysis.

Aligning transcripts by their start / stop sitesand aggregating the coverage gives us metagene data.The number
of nucleotides to be taken on either side ofstart / stop site is given by the metagene radius.

-1, —--leftspan <leftspan>
Number of nucleotides to the left of start / stop sites for defining UTRS / UTR3 junction regions. [default: 35]

-r, —-rightspan <rightspan>
Number of nucleotides to the right of start / stop sites for defining UTRS / UTR3 junction regions. [default: 15]

—--lengthmin, --min <lengthmin>
Minimum read length to be counted [default: 15]

—-lengthmax, —--max <lengthmax>
Maximum read length to be counted [default: 35]

——ribometa <ribometa>
Metadata file, for the ribo file, in yaml format.

24 Chapter 5. Python CLI

RiboPy, Release 0.0.0

——expmeta <expmeta>
Metadata file, for the experiment, in yaml format.

——-nocoverage
Do not store coverage. By default, coverage IS stored at nucleotide resolution, of each transcript, for each read
length. Turning this flag on decreases size of ribo file at the cost of coverage data. From the alignment data, five
prime end of the reads, mapping to each nucleotide position, of each transcript is computed for each read length.
We call this coverage. Coverage is used for metagene analysis and region counts. By default, ribopy stores
coverage data in the ribo file. Keeping coverage increases the ribo file size considerably. Users can choose NOT
to keep coverage by setting this flag.

-n, ——nprocess <nprocess>
Number of cores to be used. [default: 1]

Arguments

RIBOFILE
Required argument

5.1.2 dump

Dump selected parts of ribo files to particular formats

CLI Reference dump [OPTIONS] COMMAND [ARGS]...

annotation

Gives UTRS, CDS and UTR3 annotation in bed format.
Annotation is written to standard output if no output file is given.
Examples:

1) Store the annotation in a bed file

’ribopy dump annotation -o regions.bed sample.ribo

2) Print annotation to standard output

’ribopy dump annotation sample.ribo

’CLI Reference dump annotation [OPTIONS] RIBO

Options

-0, ——out <out>
Output file in bed format

Arguments

RIBO
Required argument

5.1. CLI Reference 25

RiboPy, Release 0.0.0

coverage

Prints the coverage of each transcript.

This command prints the coverage of each transcript, at nucleotide resolution, for a given read length range. For
a single read length, set ‘lowerlength’ equal to ‘upperlength’. The values for the given range are aggregated by
summation.

Append “.gz” to the output file name to have the output in zipped form.
File format: options: bg, tsv

bg: Bedgraph The columns of the bedgraph file are of the form transcript_name location_start location_end
coverage_value Only the nonzero values are reported in the bedgraph file. Bedgraph is 0-based and loca-
tion_start is inclusive and location_end is exclusive.

See https://genome.ucsc.edu/goldenPath/help/bedgraph.html for a detailed description of bedgraph file for-
mat.

tsv: Tab separated File In this format, coverage values for all nucleotide positions, regardless of their value (
0 or not) are reported.

The columns of the file are of the form transcript_name comma_separated_coverage
Examples:

1) Get coverage data, of WT, for read length 21 in zipped bedgraph format

ribopy --lowerlength 21 —-upperlength 21 \
-0 coverage.bg.gz \
——fromat bg sample.ribo WT

2) Get coverage data, of treatment_1, for range 26 to 30 in tsv format

ribopy —-lowerlength 26 ——upperlength 30
-0 coverage.tsv
——format tsv
sample.ribo treatment_1

CLI Reference dump coverage [OPTIONS] RIBO EXPERIMENT

Options
-o, ——out <out>
Output file in csv format

—-lowerlength <lowerlength>
Minimum read length to take

——upperlength <upperlength>
Maximum read length to take

——format <format>
Output file format

Options bgltsv

26 Chapter 5. Python CLI

https://genome.ucsc.edu/goldenPath/help/bedgraph.html

RiboPy, Release 0.0.0

Arguments
RIBO
Required argument

EXPERIMENT
Required argument

metagene

Dumps metagene data to a csv file or standard output.
Metagene data is obtained from coverage around start / stop site in a pre-defined radius.

Examples: Below are some examples for different scenarios.

1) Get metagene data around START site for the experiment WT. Report results for read lengths from 28 to
32. Agrregate data by summing accros read lengths. Also, values are summed across transcripts. Save the

results in start.csv.

ribopy dump metagene \
——experiment WT \
--site start \
-—out start.csv \
-—-lowerlength 28 ——upperlength 32 \
——sumlengths \
sample.ribo

2) Get metagene data around STOP site for the experiment Treatment_1. Report results for read length 31.

Values are summed across transcripts. Print the results on the standard output.

ribopy dump metagene \
——experiment WT \
-—site stop \
—-—lowerlength 31 ——upperlength 31 \
sample.ribo

3) Get metagene data around START site for the experiment WT. Report results for read lengths from 30 to
32. Report results for each read length. Also, values are summed across transcripts. Save the results in

start.csv.

ribopy dump metagene \
——experiment WT \
--site start \
-—out start.csv \
-—lowerlength 30 —-upperlength 32 \
sample.ribo

CLI Reference dump metagene [OPTIONS] RIBO

Options

——site <site>
Site type. [required]

-s,

Options startlstop

5.1. CLI Reference

27

RiboPy, Release 0.0.0

-0, ——out <out>
Output file in bed format

-e, ——-experiment <experiment>
Name of the experiment

-1, —-lowerlength <lowerlength>
Minimum read length to be taken

-u, --upperlength <upperlength>
Maximum read length to be taken

——sumlengths
Sum accross lengths

——-nosumtrans
Do NOT aggregate values accross transcripts

Arguments

RIBO
Required argument

reference-lengths

Gives transcript names and their lengths.
Annotation is written to standard output if no output file is given.
The first column corresponds to transcript names and the second column corresponds to transcript lengths.

Examples: Print the output to the terminal

ribopy dump reference-lengths sample.ribo

Save the output, in gzipped form, in lengths.csv.gz and use , to separate columns

’ribopy dump reference-lengths -o lengths.csv.gz —-sep "," sample.ribo

’CLI Reference dump reference-lengths [OPTIONS] RIBO

Options

-0, ——out <out>
Output file

-s, ——-sep <sep>

Column separator, default is t (tab)

Arguments

RIBO
Required argument

28 Chapter 5. Python CLI

RiboPy, Release 0.0.0

region-counts

Dumps a given region in csv format to a file or standard output.
Examples: Below are some examples for different scenarios.

1) Get number of reads mapping to the coding sequence (CDS) for the experiment WT. Report results for
read lengths from 28 to 32. Agrregate data by summing accros read lengths. Also, values are summed
across transcripts. Save the results in cds.csv.

ribopy dump region-counts \
——experiment WT \
—-—-region CDS \
--out cds.csv \
——lowerlength 28 —-upperlength 32 \
—-sumlengths \
——sumtrans \
sample.ribo

2) Get number of reads mapping to UTR3 for the experiment Treatment. Report results for read lengths from
30 to 32. Agrregate data by summing accros read lengths. CDS occupancy is reported for each transcript.
Save the results in cds.csv.

ribopy dump region-counts \
——experiment Treatment \
--region UTR3 \
-—out cds.csv \
-—lowerlength 30 —-upperlength 32 \
-—sumlengths \
sample.ribo

CLI Reference dump region-counts [OPTIONS] RIBO

Options
-r, —--region <region>
Site type. [required]
Options UTRSIUTRS_junctionICDSIUTR3IUTR3_junction

-0, ——out <out>
Output file in csv format

-e, —-—experiment <experiment>
Name of the experiment

—-lowerlength <lowerlength>
Minimum read length to be taken

—-upperlength <upperlength>
Maximum read length to be taken

——sumlengths
Sum accross lengths

——sumtrans
Sum accross transcripts

5.1. CLI Reference 29

RiboPy, Release 0.0.0

Arguments

RIBO
Required argument

5.1.3 info

Displays a summary information about the given ribo file

CLI Reference info [OPTIONS] RIBOFILE

Arguments

RIBOFILE
Required argument

5.1.4 merge

Merges a set of given ribo files into one ribo file.

The input ribo files are merged into a new ribo file. The resulting ribo file has the union of the experiments of the input

files

The ribo files to be merged must be compatible: They must have the same

1) Reference Name
2) Transcript Names & Transcript Lengths
3) Annotation
4) Ribo file parameters:
a) Metagene Radius
b) Left Span & Right Span
¢) Min & Max Read Length

5) They can not have overlapping experiment names

This option is especially useful for Ribo-Seq Data processed together and needs to be analyzed together.

CLI Reference merge [OPTIONS] OUT_RIBO_PATH

[IN_RIBO_PATHS] ...

Arguments

OUT_RIBO_PATH
Required argument

IN_RIBO_PATHS
Optional argument(s)

30

Chapter 5. Python CLI

RiboPy, Release 0.0.0

5.1.5 metadata

Display, set or delete user-defined metadata

If no name is given, the metadata of the ribo file is set, displayed or deleted.

CLI Reference metadata [OPTIONS] COMMAND [ARGS]...

delete

Deletes user-defined metadata of the ribo file or experiment
If no name is provided, metadata of the ribo file is deleted.

If name is given, metadata of the corresponding experiment is deleted.

CLI Reference metadata delete [OPTIONS] RIBO

Options

——name <name>
experiment name

——force
Set metadata without prompting user.

Arguments

RIBO
Required argument

get

Displays user-defined metadata of the ribo file or experiment
If no name is provided, metadata of the ribo file is displayed.

If name is given, metadata of the corresponding experiment is displayed.

CLI Reference metadata get [OPTIONS] RIBO

Options

——-name <name>
experiment name

Arguments

RIBO
Required argument

5.1. CLI Reference 31

RiboPy, Release 0.0.0

set

Stores the metadata in the meta file.

If no name is given, the metadata of the ribo file is set.

If name is provided, the metadata of the corresponding experiment is set.

The metadata must be in yaml format.

Example Ribo Metadata File Contents:

pipeline_name:

RiboFlow

pipeline_version:

v1.0.2

project:

elongation blocker

Example Library Metadata File Contents:

Cell_Line: | Human ESC
Treatment: | Drug A
Enzyme: RNASEI

CLI Reference metadata set [OPTIONS] RIBO

Options

—-name <name>
experiment name

—-meta <meta>
Metadata File [required]

——force
Set metadata without prompting user.

Arguments

RIBO
Required argument

5.1.6 plot

Generate some basic plots for ribo files.

CLI Reference plot [OPTIONS] COMMAND [ARGS]...

32

Chapter 5. Python CLI

RiboPy, Release 0.0.0

lengthdist

Plots the distribution of the ribosome footprint lengths.

The x-axis is the length of the protected ribosome footprints. The y-axis is the raw or normalized frequecies.

At most 7 experiments can be provided for a single plot.

Pdf and png output formats are supported. If “dump” option is provided, the data is written to the provided file path.
If the frequencies are normalized using the “—normalize” option, the y-axis becomes the percentages of the frequencies.

Examples: 1) Plot CDS length distribution of exp_1 and exp_2 and normalize the frequencies.

ribopy plot lengthdist \
-0 multiple_dist.pdf \
-r CDS —--normalize \
project.ribo exp_1 exp_2

2)Plot only main_exp and write the data to out.csv.

ribopy plot lengthdist \
-d out.csv \
-0 main_exp.pdf \
-r CDS \
project.ribo main_exp

CLI Reference plot lengthdist [OPTIONS] RIBO [EXPERIMENTS]...

Options
-r, —--region <region>
Region type. [required]
Options UTRSIUTRS_junctionlCDSIUTR3_junctionlUTR3

-0, ——out <out>
Output file in bed format [required]

-t, ——-title <title>
Plot title.

——normalize
Normalize by total metagene site coverage

-d, --dump <dump>
Dump the data to csv file

Arguments

RIBO
Required argument

EXPERIMENTS
Optional argument(s)

5.1. CLI Reference 33

RiboPy, Release 0.0.0

metagene

Generates metagene plots.

The x-axis is the relative nucleotide positions and the start /stop site is at the center (origin at 0). The y-axis is the raw
or normalized coverage.

At most 7 experiments can be provided for a single plot.
For a given start or stop site, the coverage around the site of interest is plotted.
The supported output extensions are pdf and png.

If a length range is not provided, the minimum and the maximum ranges from the ribo file are read and used as the
range. The values in the length range are aggregated to generate the metagene plot.

Examples:

1) Get coverage data, of WT, for read length 21 in zipped bedgraph format

ribopy plot metagene -s start -o hela_1.pdf project.ribo Hela_l

2) Two experiments in one plot, stop site, with normalization

ribopy plot metagene -s start --normalize -o hela_1_2.pdf project.ribo
—HeLa_1 Hela_2

3) Plot start site usiong footprints of length 20,21,22 Dump the data to out.csv file.

ribopy plot metagene -s start \
——lowerlength 20 upperlength 22 \
-0 hela_1.pdf \
-d out.csv \
project.ribo Hela_l

CLI Reference plot metagene [OPTIONS| RIBO [EXPERIMENTS]...

Options
-s, ——site <site>
Site type. [required]
Options startlstop

-0, ——out <out>
Output file. [required]

—-lowerlength <lowerlength>
Lower read length

——upperlength <upperlength>
Upper read length

-t, —-title <title>
Plot title.

——normalize
Normalize by total metagene site coverage

-d, --dump <dump>
Dump the data to csv file

34 Chapter 5. Python CLI

RiboPy, Release 0.0.0

Arguments

RIBO
Required argument

EXPERIMENTS
Optional argument(s)

regioncounts

Generates barplots of the percentages of the UTRS, CDS and UTR3 counts.

The raw counts are saved to a csv file if “~dump” option is provided.

If a length range is not provided, then the range is determined using the mininum and the maximum read lengths in

the ribo file.

Examples: 1) Plot the region counts for the experiment names sample for lengths from 29 to 31

ribopy plot regioncounts --lowerlength 29 —-upperlength 31 \
—-—-out sample.region_counts.pdf test.ribo sample

2) Plot region counts for the two experiments WT and DrugA for all lengths combined

ribopy plot regioncounts —--out wt_anddrug.pdf other.ribo WT DrugA

’CLI Reference plot regioncounts [OPTIONS] RIBO [EXPERIMENTS]...

Options
-0, ——out <out>
Output file [required]

——lowerlength <lowerlength>
Lower read length

—-upperlength <upperlength>
Upper read length

-t, —-title <title>
Plot title.

—--horizontal
Draw bars horizontally.

-d, —-—dump <dump>
Dump the data to csv file

Arguments

RIBO
Required argument

EXPERIMENTS
Optional argument(s)

5.1. CLI Reference

35

RiboPy, Release 0.0.0

5.1.7 rnaseq

Display, set or delete RNA-Seq data

CLI Reference rnaseq [OPTIONS] COMMAND [ARGS]...

delete

Delete RNA-Seq data of a particular experiment

Example

ribopy rnaseq delete —-name WT test.ribo

CLI Reference rnaseq delete [OPTIONS] RIBO

Options
—-name <name>
experiment name [required]

——force
Delete RNA-Seq without prompting user.

Arguments

RIBO
Required argument

get

Get transcript expression data of a given experiment
If no output parameter is provided, the results are printed to standard output.

Transcript expression is reported in two columns where the first column corresponds to transcript names and the second
column corresponds to transcript expression.

Examples

Save the transcript expression in a tab separated file in gzipped form.
1) ribopy rnaseq get -name WT —out transcript_exp.tsv.gz test.ribo
Print the transcript expression on the screen

2) ribopy rnaseq get -name WT test.ribo

36 Chapter 5. Python CLI

RiboPy, Release 0.0.0

CLI Reference rnaseq get [OPTIONS] RIBO

Options
—-name <name>
experiment name

——out <out>
Output File

--sep <sep>
Column Separator: Default is tab

Arguments

RIBO
Required argument

set

Store the transcript expression data of an experiment

7?7 MISSING DOCUMENTATION ??

CLI Reference rnaseq set [OPTIONS] RIBO

Options
-n, ——name <name>
experiment name [required]

-a, --alignment <alignment>
RNASeq alignments in bed or bam format.

-c¢, ——counts <counts>
Transcript Expression File

—-f, ——format <format>
RNA-Seq alignment format

Options bedlbam

-—-sep <sep>
Column Separator for counts file [default:]

——force
Set RNA-Seq without prompting user.

Arguments

RIBO
Required argument

5.1. CLI Reference

37

RiboPy, Release 0.0.0

38

Chapter 5. Python CLI

CHAPTER O

R API

A walkthrough of RiboR is in this link.

39

https://ribosomeprofiling.github.io/ribor/ribor.html

RiboPy, Release 0.0.0

40

Chapter 6. R API

CHAPTER /

Release notes

7.1 Latest

7.1.1 Enhancements

* Improved documentation

7.2 v0.0.0

Date: 09/19/2019

* Working initial version.

41

RiboPy, Release 0.0.0

42

Chapter 7. Release notes

CHAPTER 8

Index

* genindex

43

RiboPy, Release 0.0.0

44

Chapter 8. Index

Index

Symbols

—annotationfile, —-annotation
<annotationfile>
CLI-Reference-create command line
option, 24
—debug, —-no-debug
CLI-Reference command line option,
21
—expmeta <expmeta>
CLI-Reference-create command line
option, 24
—force
CLI-Reference-metadata-delete
command line option, 3l
CLI-Reference-metadata—-set command
line option,32
CLI-Reference-rnaseg-delete
command line option, 36
CLI-Reference-rnaseg-set command
line option, 37
—format <format>
CLI-Reference—-dump—-coverage
command line option, 26
—-horizontal
CLI-Reference-plot-regioncounts
command line option,35
—lengthmax, -max <lengthmax>
CLI-Reference-create command line
option, 24
—lengthmin, -min <lengthmin>
CLI-Reference-create command line
option, 24
—lengthsfile, -lengths <lengthsfile>
CLI-Reference-create command line
option, 24
—-lowerlength <lowerlength>
CLI-Reference-dump-coverage
command line option, 26
CLI-Reference-dump-region—-counts

command line option,29
CLI-Reference-plot-metagene
command line option, 34
CLI-Reference-plot—-regioncounts
command line option, 35
-meta <meta>
CLI-Reference-metadata-set command
line option, 32
-metageneradius, -radius
<metageneradius>
CLI-Reference-create command line
option, 24
—-name <name>
CLI-Reference-create command line
option, 24
CLI-Reference-metadata-delete
command line option, 31
CLI-Reference-metadata—-get command
line option,3l
CLI-Reference-metadata—-set command
line option, 32
CLI-Reference-rnaseqg-delete
command line option, 36
CLI-Reference-rnaseg—-get command
line option, 37
—-nocoverage
CLI-Reference-create command line
option, 25
-normalize
CLI-Reference-plot—-lengthdist
command line option, 33
CLI-Reference-plot—-metagene
command line option, 34
—nosumtrans
CLI-Reference-dump—metagene
command line option,28
-out <out>
CLI-Reference-rnaseg-get command
line option, 37
—reference <reference>

45

RiboPy, Release 0.0.0

CLI-Reference-create command line
option, 24

—-ribometa <ribometa>

CLI-Reference-create command line
option, 24

—-sep <sep>

CLI-Reference-rnaseg-get command
line option, 37

CLI-Reference-rnaseg-set command
line option,37

—sumlengths

CLI-Reference-dump-metagene
command line option, 28

CLI-Reference-dump-region-counts
command line option, 29

—sumtrans

CLI-Reference-dump-region—-counts
command line option, 29

—upperlength <upperlength>

-a,

-a,

-c,

-e,

CLI-Reference—-dump—-coverage
command line option, 26
CLI-Reference-dump-region—-counts
command line option, 29
CLI-Reference-plot-metagene
command line option, 34
CLI-Reference-plot-regioncounts
command line option, 35
—alignment <alignment>
CLI-Reference-rnaseg-set command
line option, 37
—alignmentfile <alignmentfile>
CLI-Reference-create command line
option, 24
—counts <counts>
CLI-Reference-rnaseg-set command
line option, 37
—dump <dump>
CLI-Reference-plot-lengthdist
command line option, 33
CLI-Reference-plot-metagene
command line option, 34
CLI-Reference-plot-regioncounts
command line option, 35
—experiment <experiment>
CLI-Reference-dump-metagene
command line option,28
CLI-Reference-dump-region-counts
command line option, 29
—alignmentformat <alignmentformat>
CLI-Reference-create command line
option, 24
—format <format>
CLI-Reference-rnaseg-set command
line option, 37

_l,

-1,

-n,

-n,

-0,

-r,

-r,

-s,

-s,

-u,

—-leftspan <leftspan>
CLI-Reference-create command line
option, 24
—lowerlength <lowerlength>
CLI-Reference—-dump—metagene
command line option, 28
—name <name>
CLI-Reference-rnaseg-set command
line option, 37
—nprocess <nprocess>
CLI-Reference-create command line
option, 25
—out <out>
CLI-Reference-dump-annotation
command line option,?25
CLI-Reference—dump—-coverage
command line option, 26
CLI-Reference-dump-metagene
command line option, 27
CLI-Reference-dump-reference-lengths
command line option, 28
CLI-Reference-dump-region-counts
command line option, 29
CLI-Reference-plot-lengthdist
command line option, 33
CLI-Reference-plot—metagene
command line option, 34
CLI-Reference-plot-regioncounts
command line option, 35
-region <region>
CLI-Reference-dump-region-counts
command line option, 29
CLI-Reference-plot-lengthdist
command line option, 33
—-rightspan <rightspan>
CLI-Reference-create command line
option, 24
-sep <sep>
CLI-Reference-dump-reference-lengths
command line option,28
—-site <site>
CLI-Reference—-dump—metagene
command line option, 27
CLI-Reference-plot-metagene
command line option, 34
—title <title>
CLI-Reference-plot-lengthdist
command line option, 33
CLI-Reference-plot-metagene
command line option, 34
CLI-Reference-plot-regioncounts
command line option, 35
—upperlength <upperlength>
CLI-Reference-dump-metagene

46

Index

RiboPy, Release 0.0.0

command line option, 28

C

CLI-Reference command line option
-debug, —-no-debug, 21
CLI-Reference-create command line
option
—annotationfile, —annotation
<annotationfile>, 24
—expmeta <expmeta>, 24

—lengthmax, -max <lengthmax>, 24
—-lengthmin, -min <lengthmin>, 24
—lengthsfile, -lengths

<lengthsfile>, 24
-metageneradius, -radius
<metageneradius>, 24

—name <name>, 24

—-nocoverage, 25

-reference <reference>, 24
-ribometa <ribometa>, 24

-a, —alignmentfile <alignmentfile>,
24

—alignmentformat
<alignmentformat>, 24

-f,

-1, —-leftspan <leftspan>,?24
-n, —-nprocess <nprocess>,?25
-r, -rightspan <rightspan>, 24

RIBOFILE, 25
CLI-Reference-dump—-annotation command
line option
-0, —out <out>,25
RIBO, 25
CLI-Reference—-dump-coverage command
line option
—format <format>, 26
-lowerlength <lowerlength>, 26
—upperlength <upperlength>,26
-0, —out <out>, 26
EXPERIMENT, 27
RIBO, 27
CLI-Reference-dump-metagene command
line option
—nosumtrans, 28
—-sumlengths, 28

-e, —experiment <experiment>, 28
-1, -lowerlength <lowerlength>, 28
-0, —out <out>,27

-s, —site <site>,27

-u, -upperlength <upperlength>,28
RIBO, 28

CLI-Reference-dump-reference-lengths
command line option

—-out <out>, 28

-sep <sep>, 28

-o,
-s,

RIBO, 28
CLI-Reference-dump-region-counts
command line option
-lowerlength <lowerlength>, 29

-sumlengths, 29
—-sumtrans, 29
—-upperlength <upperlength>,29

-e, —experiment <experiment>,29
-0, —out <out>,29

-r, -region <region>, 29

RIBO, 30

CLI-Reference-info command line option
RIBOFILE, 30
CLI-Reference-merge command line
option
IN_RIBO_PATHS, 30
OUT_RIBO_PATH, 30
CLI-Reference-metadata-delete command
line option
—force, 31
—name <name>, 31
RIBO, 31
CLI-Reference-metadata—-get command
line option
—name <name>, 31
RIBO, 31
CLI-Reference-metadata—-set command
line option
—force, 32
-meta <meta>, 32
—name <name>, 32
RIBO, 32
CLI-Reference-plot-lengthdist command
line option
-normalize, 33

-d, —-dump <dump>, 33

-0, —-out <out>, 33

-r, —-region <region>, 33
-t, —-title <title>, 33

EXPERIMENTS, 33
RIBO, 33
CLI-Reference-plot—-metagene command
line option
-lowerlength <lowerlength>, 34
—-normalize, 34
—upperlength <upperlength>, 34

-d, —-dump <dump>, 34
-0, —-out <out>,34

-s, —site <site>, 34
-t, —-title <title>, 34

EXPERIMENTS, 35
RIBO, 35
CLI-Reference-plot-regioncounts
command line option

Index

47

RiboPy, Release 0.0.0

—-horizontal, 35
-lowerlength <lowerlength>, 35
—upperlength <upperlength>, 35
-d, —-dump <dump>, 35
-0, —out <out>, 35
-t, —-title <title>, 35
EXPERIMENTS, 35
RIBO, 35
CLI-Reference-rnaseg-delete command
line option
—force, 36
—-name <name>, 36
RIBO, 36
CLI-Reference-rnaseg-get command line
option
—name <name>, 37
—-out <out>, 37
—-sep <sep>, 37
RIBO, 37
CLI-Reference-rnaseg-set command line
option
—-force, 37
-sep <sep>, 37
-a, —alignment <alignment>, 37
-c, —counts <counts>, 37
-f, —format <format>, 37
-n, —-name <name>, 37
RIBO, 37

E

EXPERIMENT
CLI-Reference—-dump-coverage
command line option, 27
EXPERIMENTS
CLI-Reference-plot-lengthdist
command line option, 33
CLI-Reference-plot-metagene
command line option, 35
CLI-Reference-plot-regioncounts
command line option, 35
experiments (ribopy.Ribo attribute), 14

F

format_version (ribopy.Ribo attribute), 14

G

get_coverage () (ribopy.Ribo method), 14
get_length_dist () (ribopy.Ribo method), 14
get_metadata () (ribopy.Ribo method), 14
get_metagene () (ribopy.Ribo method), 14
get_region_counts () (ribopy.Ribo method), 15
get_rnaseq () (ribopy.Ribo method), 16

Fl

has_coverage () (ribopy.Ribo method), 16
has_metadata () (ribopy.Ribo method), 16
has_rnaseq () (ribopy.Ribo method), 16

IN_RIBO_PATHS
CLI-Reference—-merge command line
option, 30
info (ribopy.Ribo attribute), 16

L

left_span (ribopy.Ribo attribute), 16

M

maximum_length (ribopy.Ribo attribute), 16
metagene_radius (ribopy.Ribo attribute), 16
minimum_length (ribopy.Ribo attribute), 17

O

OUT_RIBO_PATH
CLI-Reference-merge command line
option, 30

F)

plot_lengthdist () (ribopy.Ribo method), 17
plot_metagene () (ribopy.Ribo method), 17
plot_region_counts () (ribopy.Ribo method), 18
print_info () (ribopy.Ribo method), 18

R

reference_name (ribopy.Ribo attribute), 18
RIBO
CLI-Reference-dump—-annotation
command line option, 25
CLI-Reference-dump-coverage
command line option, 27
CLI-Reference-dump—metagene
command line option,28
CLI-Reference-dump-reference-lengths
command line option, 28
CLI-Reference-dump-region—-counts
command line option, 30
CLI-Reference-metadata-delete
command line option, 31
CLI-Reference-metadata—-get command
line option, 3l
CLI-Reference-metadata-set command
line option, 32
CLI-Reference-plot-lengthdist
command line option, 33
CLI-Reference-plot-metagene
command line option, 35

48

Index

RiboPy, Release 0.0.0

CLI-Reference-plot-regioncounts
command line option, 35
CLI-Reference-rnaseqg-delete
command line option, 36
CLI-Reference-rnaseg—-get command
line option, 37
CLI-Reference-rnaseg-set command
line option, 37
Ribo (class in ribopy), 14
RIBOFILE
CLI-Reference-create command line
option, 25
CLI-Reference-info command line
option, 30
ribopy_version (ribopy.Ribo attribute), 18
right_span (ribopy.Ribo attribute), 18

T

transcript_index (ribopy.Ribo attribute), 18
transcript_lengths (ribopy.Ribo attribute), 18
transcript_names (ribopy.Ribo attribute), 18
transcript_offsets (ribopy.Ribo attribute), 18

Index

49

	Installation
	General Advice
	Requirements
	Using pip
	From Github

	Quickstart
	Ribo File Format
	Reference & Annotation
	Read Length
	Metagene
	Region Counts
	RNA-Seq
	Coverage
	Metadata
	Ribo File Attributes

	Python API
	Quick reference
	Ribo

	Python CLI
	CLI Reference

	R API
	Release notes
	Latest
	v0.0.0

	Index
	Index

